VAE

Auto-Encoding Variational Bayes[1]

两位作者是来自Universiteit van Amsterdam, Machine Learning Group, Diederik P. Kingma, Max Welling.论文引用:Kingma, Diederik P. and Max Welling. “Auto-Encoding Variational Bayes.” CoRR abs/1312.6114 (2013): n. pag.

Time

  • 2013.Dec

Key Words

  • reparameterization of variational lower bound
  • lower bound estimator
  • continuous latent variable with intractable posterior
  • i.i.d dataset with latent variables per datapoint

针对的问题

  1. how can we perform efficient approximate inference and learning with directed probabilistic models whose continuous latent variables or parameters have intractable posterior distributions?

总结

  1. common mean-field 方法要求approximate posterior的期望的analytical solutions,通常情况下这也是intractable.

  2. variational lower bound 的reparameterization能够产生一个简单的lower bound的可微无偏估计,SGVB(Stochastic Gradient Variational Bayes)能够用于高效的approximate posterior inference in almost any model, 能够用标准的随机梯度的方式进行优化。

  3. 通过用SGVB估计来优化识别模型,使得能够很好的执行approximate posterior inference,AEVB(auto-encoding variational bayes)算法进行推理和学习很高效。学习到的approximate posterior inference model能够用于一些任务,如recognition、denoising、representation和visualization purposes。

  4. 当这样一个神经网络用于识别模型,称之为: variational auto-encoder

  5. 在文章中,未观察到的变量\(z\)可以解释为latent representation or code, 称recognition model \(q_\phi(z|x)\) 为一个概率encoder, 称 $p_(x|z) $为一个概率decoder

  6. Related:

    • wake-sleep算法:是在线的学习算法,应用于同样的continuous latent variable models. wakel-sleep 算法用了一个recognition model来近似true posterior,缺点是要求两个目标函数同时优化,together时不能与marginal likelihood的优化一致。优点是也能应用于离散的latent variable。
    • reconstruction criterion是不足以学习到有用的representation,正则化的方法能够使autoencoders学习到有用的representation,例如denoising, contractive and sparse autoencoder variants。SVGVB目标包括一个由variational bound决定的正则项。和encoder-decoder架构相关的有predictive sparse decomposition(PSD), Generative Stochastic Networks, Deep Boltzmann Machines, 这些方法是针对unnormalized models或者limited to sparse coding models,作者提出的方法是学习有向概率模型的一类通用类型。
  7. generative model(encoder), variational approximation(decoder)

VAE

\(Fig.1^{[1]}\) Thetypeofdirected graphical model under consideration. Solid lines denote the generative model \(p_{\theta}(z) p_\theta(x|z)\), dashed lines denote the variational approximation \(q_\phi (z|x)\) to the intractable posterior $p_(z|x) $. The variational parameters \(\phi\) are learned jointly with the generative model parameters .