hybrid-SORT
Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking[1]
作者是来自大连理工和深圳TVT公司的Mingzhan Yang等人,论文引用[1]:Yang, Ming-Hsuan et al. “Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking.” AAAI Conference on Artificial Intelligence (2023).
Time
- 2024.Jan
Key Words
- weak cues like confidence state and height state
- 一句话总结:在OC-SORT的基础上,除了常用的stong cues例如apppearance feature和spatial cues(IoU),还引入了weak cues例如confidence state和height state for matching。
总结
- 多目标旨在检测和逐帧关联所有理想的目标。大多数的方法通过显式或隐式的利用strong cues,例如空间和外观信息来完成这个任务,展示出了很强的instance-level的判别能力。然而你,当目标遮挡或者聚集的时候, 空间和外观信息可能会变得模糊,因为目标的高度重叠。在本文中,展示了可以通过利用weak cues来补偿strong cues来完成这个任务。沿着速度的方向,引入置信度和height state作为潜在的weak cues。有着卓越的性能,作者的方法仍然保持Simple, Online, Real-time的特性。另外,作者的方法展示了对于多个trackers和场景的泛化性,能够即插即用,training-free。将这个方法应用到5个不同的有代表性的trackers上的时候,有很大的提升。