Co-DETR
DETRs with Collaborative Hybrid Assignments Training[1]
作者是来自商汤的Zhuofan Zong,Guanglu Song和Yu Liu,论文引用[1]:Zong, Zhuofan et al. “DETRs with Collaborative Hybrid Assignments Training.” 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (2022): 6725-6735.
Time
- 2023.Aug
Key Words
- one-to-many label assignment
总结
- 在本文中,作者观察到,太少的queries作为positive samples in DETR with one-to-one set matching 会导致sparse supervision on the encoder's output, 回影响encoer的discriminative feature learning。为了缓解这个问题,提出了一个新的collaborative hybrid assignments training scheme, 称之为Co-DETR,从versatile label assignment manners学习更有效的基于DETR的检测器。这个新的训练策略能够通过训练multiple parallel auxiliary heads supervised by one-to-many label assigments such as ATSS and FasterRCNN,简单地增强encdoer的学习能力。另外,通过其它auxiliary heads中的positive coordinates,执行extra customized positive queries,来提高decoder中的positive samples的训练效率。推理的时候,这些auxiliary heads被丢弃了,因此这个方法没有引入额外的参数和计算开销,不需要NMS。