DINOv2: Learning Robust Visual Features without Supervision[1]

作者是来自Meta的Maxime Oquab等人。论文引用[1]:Oquab, Maxime et al. “DINOv2: Learning Robust Visual Features without Supervision.” ArXiv abs/2304.07193 (2023): n. pag.

Time

  • 2024.Feb

Key Words

  • curated dataset

总结

  1. 最近在大规模数据上预训练的NLP的模型的突破,为CV领域的类似的foundation models的提供了路子。这些模型通过产生general purpose visual features,能够放大uses of images in any system。这个工作展示了,在现有的预训练的方法中,特别是自监督的方法,如果能够在足够的、多样化的curated data上进行训练,能够得到这种features。作者revisit现有的方法,结合了不同的techniques,在data和model size上进行scale pretraining。大多数的technical contributions旨在加速和stabilizing training at scale。在数据方面,作者提出了一个自动化的pipeline,来构建一个dedicated, diverse和curated image dataset,而不是uncurated data,就像self-supervised中常做的那样。在model方面,作者训练了一个1B的ViT model,然后蒸馏到一些更小的models,超过了best available general-purpose features, OpenCLIP。
阅读全文 »

OpenVLA: An Open-Source Vision-Language-Action Model[1]

作者是来自Stanford、UCB等机构的Moo Jin Kim等人。论文引用[1]:Kim, Moo Jin et al. “OpenVLA: An Open-Source Vision-Language-Action Model.” ArXiv abs/2406.09246 (2024): n. pag.

Time

  • 2024.Sep

Key Words

  • Open model, pretrained on internet-scale vision-language datasets, and a visual encoder that fuses DINOv2 and SigLIP features.

总结

  1. 在internet-scale 上的vision-language 数据和diverse robot demo的结合上进行预训练的policies有潜力改变如何教robots学习new skills:而不是training new behaviors from scratch,可以对VLA models进行微调,来得到robust, generalizable policies for visuomotor control。当前的robotics的VLA挑战性在于:现有的VLAs大部分是闭源的,public无法接触;之前的工作没能探索高效微调VLAs for new tasks的方法。作者提出了OpenVLA,解决了上述的挑战,它是一个7B的open-source VLA,在970k real-world robot demo上的diverse 的collections上训练的。OpenVLA建立在Llama 2 上,结合了一个visual encoder,能够融合来自DINOv2和SigLIP的features。作为一个added data diversity和new model components的product,OpenVLA展示出了strong results for generalist manipulation, 超过了closed model例如RT-2-X,少了7x的参数。作者进一步展示出了,能够对new settings进行有效地微调,在涉及多个objects和strong language grounding abilities上的多任务环境中,展示出了很强的泛化性, 超过了从零训练的imitation learning的方法,例如Diffusion Policy。
阅读全文 »

Multi-Token Attention[1]

作者是来自FAIR的Olga Golovneva等人,论文引用[1]:Golovneva, Olga et al. “Multi-Token Attention.” (2025).

Time

  • 2025.Apr

Key Words

  • single token similarity bottleneck

总结

  1. Soft attention是一个重要的机制,使得LLMs能够在给定的context中locate相关的parts。然而,individual attention weights是由single query和key token vector的相似度决定的,这个single token attention造成了区分a relevant part from the rest of the context的信息的瓶颈。为了解决这个问题,作者提出了一个新的attention方法,Multi-Token Attention,使得LLms能够同时在多个query和key vectors上condition their attention weights。这是通过在queries、keys和heads上应用卷积操作实现的,使得相邻的queries和keys能够印象彼此的attetnion weights for more precise attention。因此,作者的方法能够用更丰富的、精细的信息来locate relevant context,超过了single vector capacity。
阅读全文 »

MOTRv3: Release-Fetch Supervision for End-to-End Multi-Object Tracking[1]

作者是来自旷视等机构的En Yu等人, 论文引用[1]:Yu, En et al. “MOTRv3: Release-Fetch Supervision for End-to-End Multi-Object Tracking.” ArXiv abs/2305.14298 (2023): n. pag.

Time

  • 2023.May

Key Words

  • conflict between detection and association
  • detect query only for newly appearing targets
  • track queries for localizing previous detected targets(association part in a implicit manner)

总结

  1. 简单来说,MOTR的问题是在于detection和association之间的冲突,MOTRv2用额外的detection network部分解决了这个问题,作者将这个conflict的归因于detect queries和track queries在训练的时候的unfair label assignment,detect queries 识别targets然后track queries associate them。基于这个观察,作者提出了MOTRv3,用release-fetch supervision 策略来平衡label assignment process。在这个策略中,labels首先released for detection,然后逐渐fetched back for association。另外两个strategy叫做pseudo label distillation和track group denoising,用来进一步提高detection和association的supervision,同时不需要额外的detection network
阅读全文 »

Grouded Language-Image Pre-training[1]

作者是来自UCLA、Microsoft Reserach、UW等机构的Liunian Harold Li, Pengchuan Zhang等人。论文引用[1]:Li, Liunian Harold et al. “Grounded Language-Image Pre-training.” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 10955-10965.

Time

  • 2022.Jun

Key words

  • object-level represetation
  • 一句话总结:GLIP将detection转化为一个grounding tasks,通过将每个region/box和text prompt的phrases进行对齐,GLIP联合训练image和language encoder,来预测正确地regions/words的pairings。同时增加了两个modalities之间的fusion,来学习language-aware visual representation

总结:

  1. 论文提出了一个grounded language-image pretraining model,用于学习object-level, language-aware和semantic-rich visual representations。GLIP统一了object detection和phrase grounding for pretraining。这个统一带来了两个好处: 1. 使得GLIP能够从detection和grounding data中学习,提高tasks和bootstrap a good grounding model. 2.GLIP通过self-training的方式,产生grounding boxes,能够利用大量的imag-text pairs,使得学习到的representations semantic-rich
阅读全文 »

3D Gaussian Splatting for Real-Time Radiance Field Rendering[1]

作者是来自法国Inria的Bernhard Kerbl等人。论文引用[1]:

Time

  • 2023.Aug

### Key Words

总结

  1. Radiance Field方法最近用多个photos或者videos,revolutionized novel-viwe synthesis of scenes。然而,实现高质量仍然需要神经网络,这很费时间来训练和熏染,最近,faster methods trade off seepd for quality。对于无边界和完整的scenes(而不是孤立的objects)和1080p分辨率的渲染,没有当前的方法能够实现实时的display rate。作者引入了3个key elements,使得能够是实现SOTA的visual quality,同时保持高竞争力的training times,还能够在1080p下,高质量地实时地novel-view synthesis。首先,从camera calibration期间产生的sparse points开始,用3D Gaussian表针scene,能够保留理想的properties of continuous volumetric radiance fields for scene optimization,同时在empty space中,避免不必要的计算,其次,执行3D Gaussian的interleaved optimization/density control,显著地优化anisotropic covariance,来实现场景的精确的表征;第三,开发了一种fast visibility-aware rendering 算法,能够支持anisotropic splatting,加速训练,能够实时渲染
阅读全文 »

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models[1]

作者是来自Salesforce Research的Junnan Li等人,论文引用[1]:Li, Junnan et al. “BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models.” International Conference on Machine Learning (2023).

Time

  • 2023.Jun

Key Words

  • 一句话总结:BLIP-2是一个vision-language pretraining方法,bootstraps from frozen pretrained unimodal models,为了弥补modality gap,提出了Querying Transformer,用两个阶段进行预训练:第一阶段用一个frozen image encoder的vision-language representation learning;第二阶段是用一个frozen LLM的vision-to-language geneative learning stage.

总结

  1. vision-and-language pre-training的成本由于端到端的large-scale models的训练,逐渐变得难以承受。本文提出的BLIP-2,通过现成的冻结预训练图像编码器和冻结的大型语言模型来引导视觉-语言预训练。BLIP-2 使用轻量级的查询变换器(Querying Transformer)来弥合模态间的差距,该Transformer分两个阶段进行预训练。第一阶段bootstraps vision-language representation learning from a frozen image encoder。第二个阶段是bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 在多个视觉语言任务上去得到了SOTA的性能。尽管有更少的需要训练的参数,实现了更好的性能。
阅读全文 »

D-FINE: Redefine Regression Task in DETRs as Fine-Grained Distribution Refinement[1]

作者是来自USTC等机构的Yansong Peng、Hebei Li等人。论文引用[1]:

Time

  • 2024.Oct

Key Words

  • iteratively refining probability distributions, fine-grained intermediate representation
  • transfers localization knowledge from refined distributions to shallower layers through self-distillation

总结

  1. 作者的D-FINE,是一个实时的object detector,通过在DETR models中重新定义regression task,实现了很好地定位效果。D-FINE包含两个key components:Fine-grained distribution refinement(FDR),和Global Optimal Localization Self-Distallation(GO-LSD)FDR将预测固定的坐标的回归过程变为iteratively refining probability distributions,提供了fine-grained的intermediate representation,能够增强localization的精度。GO-LSD是一个双向的优化策略,将来自refined distributions的localization knowledge,通过self-distillation转移到shallow layer,简化了residual prediction tasks for deeper layers。另外,D-FINE在计算密集的modules和操作中,引入了lightweight optimizations,实现了速度和精度的平衡
阅读全文 »

0%